Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
Indoor Air ; 32(2): e13001, 2022 02.
Article in English | MEDLINE | ID: covidwho-1685323

ABSTRACT

Since the beginning of the pandemic, the transmission modes of SARS-CoV-2-particularly the role of aerosol transmission-have been much debated. Accumulating evidence suggests that SARS-CoV-2 can be transmitted by aerosols, and not only via larger respiratory droplets. In this study, we quantified SARS-CoV-2 in air surrounding 14 test subjects in a controlled setting. All subjects had SARS-CoV-2 infection confirmed by a recent positive PCR test and had mild symptoms when included in the study. RT-PCR and cell culture analyses were performed on air samples collected at distances of one, two, and four meters from test subjects. Oronasopharyngeal samples were taken from consenting test subjects and analyzed by RT-PCR. Additionally, total aerosol particles were quantified during air sampling trials. Air viral concentrations at one-meter distance were significantly correlated with both viral loads in the upper airways, mild coughing, and fever. One sample collected at four-meter distance was RT-PCR positive. No samples were successfully cultured. The results reported here have potential application for SARS-CoV-2 detection and monitoring schemes, and for increasing our understanding of SARS-CoV-2 transmission dynamics. Practical implications. In this study, quantification of SARS-CoV-2 in air was performed around infected persons with mild symptoms. Such persons may go longer before they are diagnosed and may thus be a disproportionately important epidemiological group. By correlating viral concentrations in air with behavior and symptoms, we identify potential risk factors for viral dissemination in indoor environments. We also show that quantification of total aerosol particles is not a useful strategy for monitoring SARS-CoV-2 in indoor environments.


Subject(s)
Air Microbiology , Air Pollution, Indoor , COVID-19 , SARS-CoV-2/isolation & purification , Aerosols , COVID-19/virology , Humans , Pandemics
2.
Lancet Rheumatol ; 4(3): e177-e187, 2022 Mar.
Article in English | MEDLINE | ID: covidwho-1605659

ABSTRACT

BACKGROUND: In rituximab-treated patients with rheumatoid arthritis, humoral and cellular immune responses after two or three doses of SARS-CoV-2 vaccines are not well characterised. We aimed to address this knowledge gap. METHODS: This prospective, cohort study (Nor-vaC) was done at two hospitals in Norway. For this sub-study, we enrolled patients with rheumatoid arthritis on rituximab treatment and healthy controls who received SARS-CoV-2 vaccines according to the Norwegian national vaccination programme. Patients with insufficient serological responses to two doses (antibody to the receptor-binding domain [RBD] of the SARS-CoV-2 spike protein concentration <100 arbitrary units [AU]/mL) were allotted a third vaccine dose. Antibodies to the RBD of the SARS-CoV-2 spike protein were measured in serum 2-4 weeks after the second and third doses. Vaccine-elicited T-cell responses were assessed in vitro using blood samples taken before and 7-10 days after the second dose and 3 weeks after the third dose from a subset of patients by stimulating cryopreserved peripheral blood mononuclear cells with spike protein peptides. The main outcomes were the proportions of participants with serological responses (anti-RBD antibody concentrations of ≥70 AU/mL) and T-cell responses to spike peptides following two and three doses of SARS-CoV-2 vaccines. The study is registered at ClinicalTrials.gov, NCT04798625, and is ongoing. FINDINGS: Between Feb 9, 2021, and May 27, 2021, 90 patients were enrolled, 87 of whom donated serum and were included in our analyses (69 [79·3%] women and 18 [20·7%] men). 1114 healthy controls were included (854 [76·7%] women and 260 [23·3%] men). 49 patients were allotted a third vaccine dose. 19 (21·8%) of 87 patients, compared with 1096 (98·4%) of 1114 healthy controls, had a serological response after two doses (p<0·0001). Time since last rituximab infusion (median 267 days [IQR 222-324] in responders vs 107 days [80-152] in non-responders) and vaccine type (mRNA-1273 vs BNT162b2) were significantly associated with serological response (adjusting for age and sex). After two doses, 10 (53%) of 19 patients had CD4+ T-cell responses and 14 (74%) had CD8+ T-cell responses. A third vaccine dose induced serological responses in eight (16·3%) of 49 patients, but induced CD4+ and CD8+ T-cell responses in all patients assessed (n=12), including responses to the SARS-CoV-2 delta variant (B.1.617.2). Adverse events were reported in 32 (48%) of 67 patients and in 191 (78%) of 244 healthy controls after two doses, with the frequency not increasing after the third dose. There were no serious adverse events or deaths. INTERPRETATION: This study provides important insight into the divergent humoral and cellular responses to two and three doses of SARS-CoV-2 vaccines in rituximab-treated patients with rheumatoid arthritis. A third vaccine dose given 6-9 months after a rituximab infusion might not induce a serological response, but could be considered to boost the cellular immune response. FUNDING: The Coalition for Epidemic Preparedness Innovations, Research Council of Norway Covid, the KG Jebsen Foundation, Oslo University Hospital, the University of Oslo, the South-Eastern Norway Regional Health Authority, Dr Trygve Gythfeldt og frues forskningsfond, the Karin Fossum Foundation, and the Research Foundation at Diakonhjemmet Hospital.

SELECTION OF CITATIONS
SEARCH DETAIL